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Introduction

Let r be a 2® fractional factorial design of resolution V, and the (vX v)
variance-covariance matrix of the estimates associated with T. Then Tis said^to^be
balanced if and only if the quantities Var(^,)' Var(^,j), Cov(!J.,^iX Cov([i., Aii),
CovC^iJ,), Cov(X, ^0). Cov(i, Coy{Aii,Ai^) and Cov(^«, are allindependent of 7, where are distinct integers chosen outof the^set

of integers {1, 2, 8}. Thus, for example, we must have Var(^,)=Var(^2),
Cov(l„ X:>)=Coy(ZB> Xv), etc., though not necessarily F(A,)-=Var(A,,) or

A A N,

Cov(/4i2) ^]j)= Cov (^12, ^34) etc.

We shall denote treatment-combinations (,or runs or assemblies) by column
vectors (k„ k,, k,), where h (=0 or 1) denotes the level of the ith factor Then
any 2« fractional factorial design Thaving Nruns can be represented by an (8 XN)
ii^Srix (or array) with element 0 or 1, whose columns denote the various treatment-
combinations in T. Itcan be shown [Chakravarti (1956), Srivastava (1961, 1970
that anecessary and suflacient condition for Tto be balanced is that every (4xN)
submatrix Tn of Tshould have the following property : IfX_is a column vector
having (4-0 zeros and f1' sin it (for i=0, 1, 2, 3, 4), then_v occurs as a column
of To exactly in (> 0) times, where [n is independent of v_and so long as is
a (4 XiV) submatrix of Tand v(4 X1) has / 1's in it. The 5-plet jx'-([x^, (x^, (X3,
[aJ is caUed the "index set" of the balanced design (also called balanced array). It
may benoted that the identity

iV=[J.0+4iAj )- 6tA2-l-4(i.3+[A4 (1)
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is always satisfied. For brevity, we shall not discuss here the properties of balanced
or optimal designs. For rhis, the interested reader is referred to Srivastava and
Chopra(1971a,^7, c).where a discussion of previous work and interrelationswith other
areaswill be found. Here, it may be pointed out that if T is a balanced resolution
Vdesign, then the variance matrix Kf is a function of [Xj, IJ.3 and[X4 alone. The
following theorem, a special case of a result for general 2™ factorials proved in
Srivastava and Chopra (1971a), will be needed in the sequel.

Theorem J. Let T be a balanced 2® fractional factorial design of resolution
V with A''runs, and index set (jip, [Aj, [Xj, [J.3, p-.j). Define y,- (i=l, 2, 3, 4, 5) by "

=N = [Iq -!- 4IJ.1 •+ 6[Xa + 4^3 4 Hi (2)

T2 = (1^4 - [^0) i- 2(^3- !^i) (3)

Y3=N-2[i2 + !.io (4)

Y4=([X4-JJ,(,)-2((J,3-[A,) (5)

T6=I^o-4 !J.i+6ij.2—4(X3 4-[X4 (6)

Then (a) the following inequalities (7)—(12) must hold.

Ti—2yg + y5>0, or equivalently 0)

C4=2y,-f3y3—5yb>0, or equivalently [Xi +[A3>y (i.2 (8)

CB=(Yi-y3)[yi-5y5 + 4y3]-6(y2-y4)'>0, or equivalently (9)
4|J.22<-(X2(jJ,^ + (X3) + 6[i,i(J.3

3Yi+19Y3+.15y5>0. (10)

C2=3y,®-22y22-[- 56y32-126yr + 38yiY3-f 30yiy5-84Y,y4 f 105y3Y5>0. (11)

C3=Yi"—196y33+ 19Yi-y3+ 15yi-yg+ 56YiY3H 105yiY3y5—22yiY22 (12)

—126yiY4®—84yiy.,Y4 +16Y2-y3—120Y22y5+3 36Y2y3y4> 0.

(b) We must have

trv (13)

Now, suppose for a given N, one desires to find a balanced design Tsuch that
tr V-j- is a minimum. Then one would solve the diophantine equation (1), obtain,
various solutions ((io, [J-i, (^2, (Aj, i^o), substitute these in (13), and obtain the solution
[say, ([i.^*, [Xj*, [i.2*, [^3*, H'j*)^ H-*'] for which the expression on the r.h.s. of (13)
is minimized. Note that this does not solve the problem of obtaining a balanced
design which is optimal with respect to the trace criterion. The reason is that after
obtaining (a*', one has to consider the (usually very non trivial) combinatorial-
mathematical problem of determining whether there exists a balanced design
T* with index (x*'. Conditions (7) —(12), and other classes of conditions develope4
in Srivastva and Chopra (1971c) and elsewhere, are helpful for this purpose,
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However, very often the problem of finding jr'" itself is quite cumbersome.
The reason is that given N, equation (1) has usually a very large number of possible
solutions jV. For example, when N=4?,, there are thousands of possible solutions.
Substitution of all these solutions in (13) and the subsequent comparing of the value
of the trace is quite cumbersome.

One therefore needs to find results using which a lot of such solutionsj^'
could be readily screened out of consideration. In this paper, we prove a couple of
theorems, which are very useful in the last-mentioned sense.

2. Comparison of index sets under the trace-criterion.

Balanced designs Twith index sets ([^o, !i.i, [^4) such that 1x0=^1.4 and
(jii = [X3, have been called (1, 0) symmetric in Srivastava (1970)" In this section, we
show that for 2® factorials, such designs [i.e. those having index sets of the form
(n> IJ'u i^3^ H-i)] gives rise to a lower value of tr Vj than designs with index sets of
the form ([Xo- z, [j,i, (j-j, (Xj, Hq + z) or (|j.o, [Xj, Hi +z, Ho) with z^O. We conjec
ture that such a result is true for general 2" factorials, but the proof of this is still
an open problem. Indeed, an even more general result is perhaps true, namely that
an index set of the form (ho, Hi, H2> Hu Hi) would be 'better than' one of the form
((Xq-z, Hi^/= H2> Hi+^'j Ho+^)> where both z and z' are nonzero.

Theorem 2. If TiCho, Hi, H2, Hi, Ho) Hu H2> Hi, Ho "H^). be
balanced resolution Vdesigns of the 2® type, whose parameters satisfy (7)-(12), then
tr(f^Ti )<tr {Vj^).

Proof. If possible, let us assume tr(FTj) >tr(FTg). Let Ho='̂ H2' Hi=JH2'where
X, y>0 for either x or y=0 will make Ti a singular design. (A design will be called
singular if all the v parameters are not estimable).

For the array Ti, using (2)—(6), we have

Yi=2(X2 {x+4y+3), Y2=H4=0.

Y3=2ixa (x—1) and Y5=2h2 (.x:-4;'4-3) (14)

Using (14) and (7)-(12), we have respectively.

y>3n (15)

y>2l3 (16)

37;c+35>48j (17)

0=58^2- 108/-61x;;-}-93a:+85>'-19>0. (18)

b=-2^y^+l^x'-y- 49x;''+44^^-f9x;'+25/—2xf 13j -10 > 0. (19)

If we take equality in (18), then the curve it represents is a hyperbola. On
the other hand, equality in' (19) implies that the curve it represents has two branches
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(considered as an equation in x}. It can be' shown that there is no point common to
thesetwo branches for any j>2/3 [condition (16)]. In order to see this, it can be
easily checked that the equation

(-49/+9J-2)'—4(14;;+44)(-28/+25/+13^- 10)=0

does not have any root for j>2/3.

For the balanced design T^, we have

Ti= 2a2(x+4;' + 3), Y2=2z=Y4 (20)

Y3=2(x„(x- 1) and

These together with (7)-(12), give us respectively (15)-(17) and

S>f
• (22)

Hence, for both and T^, (15) and (16) imply ;;>2/3. Also tr Vti >

frVT, implies i->l_^.^928r'[-M08r,+480r:y
Tj and Tj, in view of (14), (20) and theorem 1.3. Hence, from (18), (19), (21)
and (22), we have (since both denominators. are positive in the last inequality)

• fl(928Yi —1408y3+480Y5)^928i. This, after some simplification, is reduced to

28/—1253/+497a-/-476x74-1052a:+ 680j-64<0. (23)

In order to complete the proof of the theorem, we show that there does not
exist any point (x, y) where (15) - (19) and (23) are simultaneously satisfied. First
of all, we solve the inequalities (15)-(19) and (23) in terms of x. We have

j>2/3, =/,(;;), say-. Also

(61j.-93)4-V(61j.-93y^-232(-108/+85v-19)_^;„, .
22^ "/aWj say ,

or

x< (6ly - 93)- V(6ly - 93)^--232(- 85j-19^

.\28/+3j;-10__^ . _-14;;2_30y^44
^ 7;^+22 say , x< =/3^(v), say ;

• . 12.53/-28:);« -680j;+ 64 ,
497/—476j+1052 say,
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Since x has to be > 0 and clearly/2*(3')<0 for y> 2/3, therefore we do
not consider x<fz*{y\. Thus we are to prove the theorem in the following regions :

2
: y>Y' x>f3iy), xKfiiy)

E-i '. y>Y' ^>f^^y)' x<fi*{y). and x^f^iy)

First,we take the region and show that amongst/,(j'),/2(y) and/gC;);) the
dominant condition is the one concerning/sC;^). (0 Consider ^i{y) =My)-fi{y).
Clearly From .^i(>')=0, we have (28,432,992) /_(38^430,336). y+
(17,491,872)=0, which is observed to have imaginary roots. Thus, because of the

2
continuity of ^i()')>0, in the region y> —. Hence/a(;c)>/i(j'). (//") Next, we

take 'l>iiy)^My)-Liy)- We have (1)>0. Put ^o(7)=0, we have the quartic
168/—238;'®+3/+267;'—142=0. It can be checked that two of its real roots are

—1,-y while the remaining two are imaginary, (iii) Finally, we take <f>a(y)=^f3(y)
—fiiy)- Now fi3(l)>0. ' Also, ^j(;')=0 is observed to have two real roots y=—l,
y=.^- The reduced equation is 56;'2-983'+71 =0 which has imaginary roots.
This proves that there do33 not exist any point (jc, j') contained in the region Ey

Next, we take the region Ei. In order to complete the prooffor E.^. we shall
prove that {A:>/i(y)}nL^</3*'J')} is an empty se,t. It means that we are to show
/2(y)-/3*(>')>0. This is true ifand only if (7;'+22)^ {(617—93)^+232 (108;^®—SSj
+119)}>(3322 -1561;' -- 833>'®)'̂ which, after some simplification, gives us

716,184/4-4,740,456;'3^8,097,264>'2—643,104>'-4,716,096>0 which is
obviously true. Hence the proof of the theorem is complete.

Theorem 3. If r,(|i.o, [Xi, |Ai, |J-o) and (fJ-o- i^2> [J'l+z, (J^o).
z>0, are resolution F designs whose parameters satisfy (7)—(12), then tr VT:^<tr Vt^.

Proof. If possible, let'us suppose that tr and, as before; set
[Xo=X[i.2, (ii=J!J-2. where x, j'>0. For we have, the fs are given by (14).
Furthermore, (15)-(19) of theorem 2hold here also. For Tj, Yi, Y3 and Ys remain
same, as before, and -

Ya=4z=-Y4-

From (7)- (12), we obtain

(^2^ 3 ,

(24)

(25a)

(25b)
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37a:+35>48;'. (25c)

^ > —, where 'a' is as given in (18). (25d)
z^' a

j^>63^ 2Sy+29^ where 'b' is given in (19). (25e)

Next tr > tr F_ implies

C Q c~~10?4 ^

^ t/-z''(1024Yi+5120Y3+1920Y6)+/-384z '̂
where c=3yiH38tiY3+ 30yiY6 + 56Y3HIOSysYb

Yi® -196Y3H 56Y1Y3H 19Y^Ta+15y/T5+IOSyiYsYs

e=7(2Yi - 5yb+3y3)=56[X2(7J' - 3)

/= (Ti-5yb+4y3)(Yi- Y3) = 128|Xa«(33;-2)(>'+1)
in order to prove the theorem, we shall prove first of all that

63a:-28:>'+29^ 64 3
T, >V>37+F=2

We take the last two,

64 . 3.

58x2-1083'®- 61x:»'+93*+ 85;,_19 3>'2+y—2

Now

64 3
58.*2-108j^-61x3'+93a:+85:c—19 3;'H>'-2

174;c'-5l6j''-183a:;>+279x+191j>+71
denominator

In order to prove the result, we shall prove that 174:^^—516;'^—183a;j'+
279.!C+19I3'+71 is negative. Now 174x2-516;'^-183xj+279;c+191j+71
=>174x2+x(279—1833')+(—516>'24-191j'+71). Regarding it as a quadratic in x,

. we have 'Discriminant' =75(5235j'^--3134y+379) which is always positive for any
2

y>-^ and this proves the result..

Next, after some simplification, reduces to

/(x, y)=3654x'+4816)'''-6363x'y—1960xy'+4725x'-7112y^+
406xy+l628x+2l65y+89>0. (27)

From Yi=2no+8|Xi+6iig, we have

|| -x+4j= (say), where /=^^3>0. (28)
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Substituting x=l-4y, from (28), in the l.h.s. of (27), we have

/(/, j)=3654/^+4725/H224,336/;'H 1628/+67,864/+89 -(ll,211P>-4-
37,394/;;-l-323,008/+4347)

It is obvious from (28) that 114'̂ y and hence 2/3<j^//4. Substituting
y=al in/(/, y), where 1/4, we have

f{l, fl/)=/'(-'323,008aH224,336a2-ll,211a+3,654)+

/2(67,864a'"-37,394fl+4725)+/(-4347fl+1628)+89.

It can be easily checked that each of the coefficients of P, / are positive
forfl^l/4. Thus /(/, j)>0, for/>0 andy^ljA. This proves (26a), which we
write now as

63x-28j;+29 64
> ^ a 2)

(29)

From (26), after some simplification, we obtain

z^[3(j^+ l)(3;'-2){a(63x-28j+29)-64Z»}4-

2](7:v-3)(63a:-28;'+29)6]>[ji/[21(7j'-3)&^-1-

{y+\y{2y-lf{a{(>Zx-2%y+19)-6Ab]] (30)

The inequality in (28) does not change if, after dividing both sidesby z^.
(63a:-28;>+29)

we replace by m the right hand side. Thus

3(3^+1) (3>'-2)K63x-38j'+29)-6461+216 (7j-3)(63x-28j^+29)> '̂'-^^^±^
[21(7;'—3)6HC>' + l)'(3j—2)® {a(63:*:—28:>'+29)—646}]. Multiplying both sides by
6, 6>0, and simplifying, we get

3(:^'^-l)(3j-2)6[a(63jc-28j+29)-646]>

{y+lf 3{y-2f (63x-283^+29)[fl(63;c-283^+29)—646].

Using (27) in above, we find that (28)-will hold if

36X:v-l-l)(3j'—2)(63x —28;'+29), which gives us a contradiction. This
completes the proof of the theorem.

3. Summary

Consider fractional factorial designs of the 2® experiment. For a given N
(the number of runs), let and be two competing 2' factorial designs with the
same value of N. Furthermore, suppose both 7\ and are of resolution V, i.e,
the general mean u., the main effects Ai, and the 2-factor interaction are estimable,
assuming the 3-factor and higher order interactions to be neghgible. Note that the
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number of parameters to be estimated is v, where v^I f 8+8(8 —1)/2 =37. Let V^,
2) be the (vx v) variance-covariance matrix of the estimates of the parameters,

when the design Ti is used. Finally, assume further that both and are "balanced"
(seethe definition in the introduction) with ."index sets" of the form (jj,o, [Xo)
and ((Xo~v), (^1-7)', (x.„ respectively, were (j=0, 1,2),| ! y)' ] <iii,
i "n I and either v) or yj' (but not both) are zero. Then, in this paper, we

prove that tr V„ < F ; in other words Ti is at least as good as under the

trace criterion.
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