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Introduction

Let T be a 28 fractional factorial design of resolution ¥, and ¥V, the (vXv)

variance matrix of the estimates associated with 7. Then T is said to be
AN

A A AN
balanced if and only if the quantities Var(4y), Var(dy;), Cov(p,4, Covl(p, 4y),

variance-co

A A A A A A A L) A A
Cov(d;,45), Cov(di, Ai), Cov(di, Ay, Cov(dsy, Aw) and Cov(dy, Aw)are all
independent of i, j, k, I, where i, j, k, [ are distinct integers chosen out of the set

s A A
of integers {1, 2, .., 8} Thus, for example, we must have Var(4;)=Var(4,),

A A A A - A A
Cov(Ays, Aa)=Cov(dg, Au), ete., though not mnecessarily V(A,)=Var(4;,) or
A A A A
ICOV(AIZ, A13)=COV (AIZJ As,;).etc.

We shall denote treatment-combinations (or runs or assemblies) by column
vectors (g, ks ---» Kg), Where k; (=0 or 1) denotes the level of the ith factor. Then
any 28 fractional factorial design T’ having N runs can be represented by an (8 X N)
matrix (or array) with element 0 or 1, whose columns denote the various treatment-
combinations in 7. It can be shown [Chakravarti (1956), Srivastava (1961, 1970)]

. that a necessary and sufficient condition for T to be balanced is that every (4xXN)

submatrix T, of T should have the following property : If v is a column vector
having (4— i) zeros and i 1's in it (for i=0, 1, 2, 3, 4), then v occurs as a column
of T, exactly p; (> 0) times, where g is independent of y and Ty, so long as T, is
a (4x N) submatrix of Tand v (4x1) has i I's in it. The 5-plet ' =(o, K1, tas tas

_—

w,) is called the «index set” of the balanced design (also called balanged array). It
may benoted that the identity . .

N=py+4p, t Oyt 4tta+ g 1)




125

is always satisfied. For brevity, we shall not discuss here the properties of balanced
or optimal designs. For rhis, the interested reader is referred to Srivastava and,
Chopra (1971a, b, ). where a discussion of previous work and interrelations with other
areas will be found. Here, it may be pointed out that if 7'is a balanced resolution
Vv design, then the variance matrix ¥y is a function of go,l, (s, g and p, alone. The
following theorem, a special case of a result for general 2™ factorials proved in
Srivastava and Chopra (1971a), will be needed in the sequel.

Theorem 1. Let T be a balanced 28 fractional factorial design of resolution
V with N runs, and index set p'= (uo, (1, ta, fhar Pa).  Define i (i=1, 2,3, 4, 5) by °

Y1==N = potdpg + Opa-F4ps 1 1y 2
Yo=(tta — tto) 1 23— 121 _ 3
Ya=tus ~ 203+ tho 4
Y= (ta—po) —2(pa - 1) (5)
—4 P~1+6P~2_4I-{3 tig ' ©

Then (a) the following inequalities (7)—(12) must hold. |
v1— 275+ 71520, or equivalently p, >0 )
c1=2v; + 3v5—5v5 20, or equivalently wp,+p;> % Ya ®)
es=(v1—Ya)[Y1— 575 +4v3]—6(v.—14)*>0, or equivalently  (9)

4p2® <ol 1tg) + 601t

37,4+ 19y;+15v; 0. S (0
€2 =37,"—22v5% + 5615>—126v,> -+ 38y1 73 + 30y,v5—84Y,vs + 105v5y5 >0 (11)
=11 196752+ 197,25 + 157,25+ 56Y1Y 3"+ 10571 Y515—22Y1 Y. (12)

— 126727, —841172vs + 167, vs—120v2 5+ 33672574 > 0.
(b) We must have

¢ 7c 5 '
ry =2 . Ta y 3 13
T Cs + Cs 1 4pp - (13)

Now, suppose for a given N, one desires to find a balanced design T’such that
tr V7 is a minimum. Then one would solve the diophantine equation (1), obtain,
various solutions (i, 1, 2, 1, fo), Substitute these in (13), and obtain the solution
Lsay, (wy*, £, wo*, ws*, w,¥)= p*'] for which the expression on the r.h.s. of (13)
is minimized. Note that this does not solve the problem of obtaining a balanced
design which is optimal with respect to the trace criterion. The reason is that after
obtaining u*’, one has to consider the (usually very non trivial) combinatorial-
mathematical problem of determining whether there exists a balanced design
T* with index p*'.  Conditions (7) —(12), and other classes of conditions developed
in Srivastva and Chopra (1971c) and elsewhere are helpful for this purpose,
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However, very often the problem of finding p.*' itself is quite cumbersome.
The reason is that given N, equation (1) has usually a very large number of possible
solutions LLL For example, when N=48, there are thousands of possible solutions.
Substitution of all these solutions in (13) and the subsequent comparing of the value
of the trace is quite cumbersome. ’

One therefore needs to find results using which a lot of such solutions p’
could be readily screened out of consideration. In this paper, we prove a couple of
theorems, which are very useful in the last-mentioned sense.

2. Comparison of index sets under the trace-criterion.

' Balanced designs 7" with index sets (iq, Wy, tos M3, () SUch that pe=p, and
1, =4y, have been called (1, 0) symmetric in Srivastava (1970)° In this section, we
show that for 28 factorials, such designs [i.e. those having index sets of the form
(s P1s Par Mg )] givesrise to a lower value of tr V; than designs with index sets of
the form (g~ Z, t1 W, L1, Ro+2) OF (o, (1 — 2, (g, Iy T2, 1) With 270, We conjec-
ture that such a result is true for general 2™ factorials, but the proof of this is still
an open problem. TIndeed, an even more general result is perhaps true, namely that
an index set of the form (gg, @y, tey 1, 1) . Would be ‘better than’ one of the form
(ko —2, 1y —2's e, 1 +2', to=2), Where both z and z’ are nonzero.

Theorem 2. If Ty(uo, By, P %1, #o) and To(pe—z, 1, Har i Bo+2), 250, be
balanced resolution ¥ designs of the 2° type, whose parameters satisfy (7)-(12), then
tr(Vr, )<tr Vg, ). ' .

Proof. If possible, let us assume tr(Vr,)) >tr(Vy,). Let poéxgg, W, =yu,, where
x, y>0 for either x or y=0 will make T a singular design. (A design will be called
singular if all the v parameters are not estimable).

For the array T3, using (2)~-(6), we have

v1=2uy (x+4y+3), Ya=r,=0, .
13=2u, (x—1) and y;=2u, (x—4y+3) 14

Using (14) and (7)—(12), we have respactively.

y>3/7 (15)
y>2/3 (16)
37x+35>48y . (17)
a=58x2— 108y —61xy+4-93x+85y—19>0. (18)

b= — 28y%+ 14x%y—49xy®+44x2+9xy + 25y*—2x + 13y—10>0. (19)

If we take equality in (18), then the curve it represents is a hyperbola. On
the other hand, equality in (19) implies that the curve it represents has two branches
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(considered as an equation in x). It can be shown that there is no point common to
these two branches for any y>2/3 [condmon (16)]. - In order to see this, it can be
easily checked that the equation

(—49)2-4-9y — 22— 4(14y -+ 44)(—28)°+ 255+ 13y — 10) =0
does not have any root for y>2/3.
For the balanced design T, we have .
§1=292(x+4y+3), Ya=2z=y, (20)
Ya=2us(x—1) and v;=2p,(x~4y+3) |

" These together with (7) —(12), give us respectively (15) —(17) and

258 ,
‘;—i>— | @b

14y+44 22

W
s

Hence for both T and Ty, (15) and (16) imply y>2/3. Also tr Vi, >

T a—928z*
trVr, implies —— b >b 938y, — 14087, 74307’ since ¢, and ¢; are the same for both

T, and Ty, in view of (14), (20) and theorem 1.3. -Hence, from (18), (19), #2))
and (22), we have (since both denominators. are ‘positive’ in the last inequality)

+ a(928y, —1408v;+ 480v;) <928b. This, after some s1mphﬁcat10n is reduced to

28y"— 1253y +497xy* ~ 476xy+ 1052x 4 680y — 640, (23)

In order to complete the proof of the theorem, we show that there does not
exist any point (x, y) where (15) - (19) and (23) are simultaneously satisfied. First
of all, we solve thc inequalities (15)—(19) and (23) in terms of x. We have

y>2/3, x>48} —/l(y) say. Also

— _ O _ % —19) l
> ((,1) 93)+ 4/ (61y 93116232( 108y*+85y —19) (), say ;

or

(61y —93)— v/ (61y—93)*~232(~108)°F 85y —19) _ / 4 .
< 116 fz (y)> say ;

28y°+3y—10

=14y 3074 44
Ty+22

x> amyrayy SO sy

=f3(y),,say ;X<

1253)2—28)% - 680y 4+ 64 .-
497 —476y+ 1052 ~710): say.

x<
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" Since x has to be > 0 and clearly /,*() <0 for y> 2/3, therefore we do -
not consider x<f;3*(»). Thus we are to prove the theorem in the following regions: :

E,: y>-2 K10, ¥>H0) HO) x<FL0)
E,: y> 2 x>ﬁ(y) x>fz(y) x<fa*(y) and x<f4(y)

A First, we take the region E; and show th:;t' amongst (), f(») and f3(y) the
dominant condition is the one concerning f(y). (i) Consider é.(») =) —f1(»).
Clearly ¢,(1)>0. From ¢,(3)=0, we have  (28,432,992) ¥*—(38,430,336). y+
(17,491,872)=0, which is observed to have imaginary roots. Thus, because of the
continuity of ¢, #,(3)>0, in the region y> —i— Hence f,(»)>/1(). (iD Next, we

take ¢,(3) =) -f.(). We have ¢, (1)>0. Put ¢,(»)=0, we have the quartic
168y%—238y°+3)*4+-267y—142=0. It can be checked that two of its real roots are
—1,—:;:— while the remaining two are imaginary. (i) Finally, we take ¢3(3)=fy(»)

—f,(»). Now $(1)>0. " Also, $,(»)=0 is observed to have two real roots y=—T1,
y=,—§—. The reduced equation is 56y2—98y+71=0 which has imaginary roots. .

This proves that there do=3 not exist any point (¥, ) contained in the region E,.

Next, we take the region E,. In order to complete the prooffor E,, we shall’
prove that {x> NN {x <fy*(»)} is an empty set. It means that we are to show-
£:(») —f:*(»)>0. This is true if and only if (Ty+22)% {(61y—93)*+232 (108y*—85y
+119)}>’ 3322 —1561y --833y%)?, which, after.some s1mp11ﬁcatxon gives us

716,184y* +4,740,456y3 +8,097,264y*—643,104y -4, 716 096>0 which is -
obviously true. Hence the proof of the theorem is complete.

. Theorem 3. If Ty(uo, 15 W i1, o) and Tp (o, 1= ta, tit2, uo)
z>0, areresolution ¥V designs whose parameters satisfy (7) (12), then tr Vo, <tr Vr

Proof. If possible, let us suppose that tr Vo, 21r VT2 and, as before; set
Wo=Xi;, M1=Yi:, Where x, y>0. For T,, we have, the y's are given by (14).
Furthermore, (15)—(19) of theorem 2 hold here also For T, v, va and y; remain
same, as before, and .

—4z=—Y4 ' (24)

From (M- (12), we obtam ' .
o 3 . : g - 25a |
> | | (259)
w3 - (25b)

i 3yE+ y—2
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37x+35>48y. - : ) (25¢)
2
% >6i, where ‘@’ is as given in (18). - (25d)
= >63x—2_b8y+_29 where ‘b’ is given in (19). (25¢)
Next, tr VT >z VT implies

c c—1024 22 N 6
7 7 2 d=7X(1024v;+ 51207, F19207;) f—384z"

where ¢=3y,2438y,Ys+ 30v,vs + 56Y5°+ 1057575
d=v,4—196v,>+ 56Y1Y32+ 19v%)vs+ 15717 vs+ 105v1vavs
e=T(2y,— 55+ 3v3)=56p(7y — 3)
F=(r1—5vs+4vs)(y1— vs) =128,°(3y '72)(y+ D
in order to prove the thebrem we shall prove first of all that

>4 7y @69

We take the last two,

‘ 64 - 3
58x2—108y2—61xy+93x+ 85}«'—19> 3y2fy—2

Now
64 ‘ - _ 3
58x%2— 108y2 61xy+93x+85y—9 3yi4y—2

| 174x— 516y — 183xy+279x+ 191+ 71
: denominator ..

In order to prove the result, we shall prove that 174x2—516y*—183xy--
279x+191y+71 is negative. Now  174x2—516y2—183xy+279x+191y+71
l=a174362—{-.%(279—183y)+( 516y® +191y+7l) Regarding it as a quadratic in x,

. we have ‘Discriminant’ =75(5235y*—3134y-+-379) which is always positive for any

y>—2'— and this proves the result..

3
Next, 6_3x_i_8y_—}i9 >-6-:'—, after some sxmphﬁcatlon reduces to
J(x, ¥)=3654x%14816y° 6363x2y—1960xy +4725x"—7 112y +

406xy--1628x 42165y + 89>0 ' X))
From V1=2[10+SEL1+6F2; we have ‘

' x+4y== Y—1—3—1(say) where 1—? —3>0. (28)
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Substituting x=I[— 4y, from (28), in the Lh.s. of (27), we have

* (L, ) =365412-F 472512+ 24,3361+ 16281 + 67,864y + 89 — (11,2111 +
37, 394ly+323 008y°+ 4347)

It is obvious from (28) that //4>y and hence 2/3<y<//4. Substltutmg
y=al in f(I, ), where a< 1/4, we have

f(l, al)=1%(—323,0084°+224,3364°—11,211a+-3,654) +
12(67,864a%*—37,394a-+ 4725y + I(—4347a-+ 1628) - 89.
It can be easily checked that each of the coefficients of I3, /2, [ are positive ‘

for a<1/4. Thus f(/, »)>0, for [>0 and y<//4. This proves (26a), which we
write now as

e’ 63x— 28y+29 64 3 A
ke b ~a (3y2_LV 2) : (29)

From (26), after some simplification, we obtain

2[3(3+ 1)(3y—2)a(63x—28y +29)— 645} +
21(7y —3)(63x— 28+ 2906 >y’ 21 Ty — -+ N
O+1) (3y—Da(63x—28y +29) =648} (30)

The inequality in (28) does not change if, after dividing both sides by 2%,

we replace b gé_?;x;iSy +29) the - right hand side. Thus

3(3-+1) (By—2a(63x—38-+29)— 64b]-+21b Ty~ 3)(63x— 28y 4 29) HEH =28+ 20)

[21(7y—3)b2+ (¥ +1)2(3y—2)* {a(63x— 28y--29)—64b}]. Multiplying both sides by
b, b>0 and sunphfymg, we get
3(r4- 1)(3y—2)b[a(63x 28y+29) 64b]>
(y+1)2 3(y—2)% (63x— 28y+29)a(63x— 28yt 29)—645].
Using (27) in above, we find that (28) will hold if

3>+ 1)(3y—”)(63x 28y+29), which gives us a contradiction. This
completes 1he proof of the theorem.

3. Summary

Consider fractional factorial designs of the 28 experiment. For a given N

(the number of runs), let 7; and T, be two competing 2® factorial designs with the
same value of N. Furthermore, suppose both Tj and T, are of resolution V, i.e,
the general mean u the main effects A4;, and the 2-factor interaction Aw areestimable,

- assuming the 3-factor and higher order interactions to be negligible. Note that the
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tumber of parameters to be estimated is v, where v==1 +8+48(8 —1)/2=37. Let VT

(i=1, 2) be the (vx v) variance-covariance matrix of the estimates of the parameters,
when the design T is used. Finally, assume further that both T} and T, are “balanced”
(secthe definition in the introduction) with “index sets” of the form (g, 11, tes 1, o)
and (o=, B1— "', ey i7", o+n) respectively, were p; >0 (=0, 1,2),3 | v | <p,

| n| <po, and either n or n' (but not both) are zero. Then, in this paper, we
_prove that tr VT, < tr VTE; in other words T; is at least as good as T, under the

trace criterion.
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